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Extended Abstract

Problem description Traditional attitude control design of rcusable launch vchicles involves
independent design of autopilot and control allocation modules [SBB99)], [SK97], [SH.J00], [IS00],
[Hod00]. Unfortunatcly, this results in the potential for overly aggressive commands in the autopilot
resulting in a loss of performance duc to actuator saturation, particularly if the autopilot may suffer
from intcgrator wind-up [HHO1]. This unfortunate situation can arisc from, ¢.g., actuator position
limits that requirc that the actuator command vector é.(t) € A where A is the sct of feasible
actuator commands dcfined by
AR{5:6_<E<64)

where 6_ and 8, arc minimum and maximum position commands, respectively. Control allocation
is limited by the attainable moment set T [BD95], [Dur93], [Dur99], defined as

T={r:3€Aand G§ =7}

where G is the current Jacobian (control derivatives) matrix from the vehicle actuator condition
vectort & to the vehicle body torgucs 7,
cadn
06
On-linc calculation of the entirc attainable moment sct T is not a practical option for the following
rcasons:

1. Actuator models (acrodynamic) arc approximatc at best.
9. Actuator failure will significantly modify the attainable moment sct 7.

We proposc instcad to calculate a point-wisc “snapshot” of T as shown in Figurc 1. Given a torque
command 7. we compute a local attainable moment set T () detcrminining the maximum and
minimum torquc limits in cach channcl (z =roll, y =pitch, z =yaw) whilc holding the other torque
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Figurc 1: Attainable moment sct snapshot

valucs constant. The dimensions of this local attainable moment sct can be calculated by a lincar
programming problem, c.g., given the current system Jacobian matrix G,
Tr.nax = argmgx[ 100 ] Gé
. 0160 010
subject to § € A, [0 0 1]6—'5—[0 0 I]Tc
Thesc torque limits may be of usc in two sccnarios:

1. in communicating overall actuator torque limits to the autopilot and autocommandecr so that
autopilot and/or guidance commands may be appropriately adjusted, and

2. in flight sccnarios where control allocation is required to divide torque commands a primary
sct of actuators (c.g, acrosurfaces) and a sccondary backup sct of actuators (c.g., rcaction
thrusters).

Torque limits computation and linear programming The computation of the local attain-
ablc moment sct can be posed as a sct of six lincar programming problems

max Jz) J() =z (0.1)
subject to Az =b
z-<z<zt
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where ¢ and A arc construct from appropriatc rows of the Jacobian matrix G and the vector b is
the sct of “pinned” torques from the current (feasible) torque command 7. (If 7 is infeasible then
torque limits max J(z) can be computed by locating the vertex of the feasible sct that minimizes
the crror Az = b [Lucs4].) Standard codes 1 gvailable for the lincar programming problem such as
dsplp and lp-solve arc inappropriate for this problem, since

1. Thesc codcs arc design for large sparsc problems, where as our A matrix is densc and we have
very few unknowns - at most 10 or 20.

9. Thesc algorithms can require several iterations to converge to an optimal solution, where as
we require fast operation (low computational overhead).

3. Our problem docs not change too much from onc time-step to the next (system Jacobians
do not change much over onc sampling pcriod), so our method should make usc of carlier

solutions.

4. Further, our problem docs not require an cxact optimal solution - just a good approximation.

We thercfore proposc the use of a imited-itcration simplex method LD solution that uscs results
(active constraint sct) of the previous iteration to compute initial valucs for the next itcration.
Expcrience indicates that two simplex itcrations is sufficient for adequatc performance, and so our
method requires the inversion of at most 24 9 x 2 matrices (2 for cach limit, 2 limits per axis).

We show prcliminary results of our method in Figure 2. The routine 1psolve is a full simplex
LD solver that cxits upon convergence or detection of an infcasible problem (notice time spike at
t ~ 13scc). The routine 1pIter is an implementation of our fast LD solver. Both 1lpsolve and
1pIter havc an outcrmost m-file script that is uscd to call a C-codc implementation of our fast
itcration. dmTrqLim is a full C-code translation of 1pIter that is included for comparison. Obscrve
that, cxcept when the input torque command is infcasible, 1pIter closcly tracks that achicvable
torquc limits cven though it is limited to at most two simplex itcrations per time stcp. This cxample
was run with only 6 simulated actuators; similar results were obtained with much larger numbecrs
of actuators in other simulation tests. _

Thesc torque limits can then be used to adjust autopilot control paramcters on-linc s0 that the
autopilot can respond appropriately to cither saturations or pcrmancnt failurcs. Onc potential
method for using torque limits is presented oxplicitly in [SBB99]. We arc investigating the usc of
this method in closcd-loop control simulations of the X-33 launch vchicle.
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Figurc 2: Prcliminary test rosults for fast computation of the local attainable moment sct. I’lant
Jacobians were madc to vary sinusoidally. An artificial failure (zcro cfcctivencss) was simulated at
t = 10scc. Simulation cxperiments were performed with C-code intcgrated into Octave on a 4350
MHz Macintosh running Ycllow Dog Linux v 2.0.
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